Starting from:

$29.99

Dynamic Programming_Homework 4 Solution

Dynamic  Programming    
  Task  1  (20  points):  Implement  the  Longest  Common  Subsequence  (LCS)     Given  two  sequences,  X  ={x1;  ...  ;  xm}  and  Y  ={y1;  ...  ;  yn}.  Find  a  subsequence  common   to  both  whose  length  is  longest.  A  subsequence  doesn‘t  have  to  be  consecutive,  but  it   has  to  be  in  order.           The  LCS  problem  has  2  versions:   • The  Simple  version,  requesting  only  to  find  out  the  length  of  the  longest   common  subsequence.  • The  Complete  version,  requesting  to  find  out  the  sequence  itself.   For  this  assignment,  you  need  to  implement  the  Complete  version  using  the  Dynamic   Programming  approach.     X  =    {x1,  …  xm}   Y  =    {y1,  …,yn}   Xi  =  the  prefix  subsequence  {x1,  …  xi}   Yi  =  the  prefix  subsequence  {y1,  …  yi}   Z  ={z1,  …  zk}  is  the  LCS  of  X  and  Y  .   LCS(i,j)  =  LCS  of  Xi  and  Yj     We  can  recursively  define  the  LCS  as:         Use  the  recursive  definition  to  set  up  your  memorization  table  and  compute  the  size   of  the  longest  subsequence  and  the  characters  that  are  part  of  it.   LCS(i,j)= 0 if i=0 or j=0, LCS(i−1 ,j−1)+1 if i,j0 and xi =yj, max(LCS(i−1 ,j),LCS(i,j−1)) if i,j0 and xi ≠yj. # $ % % & % % H  O  R  S  E  B  A  C  K S  N  O  W  F  L  A  K  E  LCS  =  OAK
Task  2  (40  points):  Calculate  stereo  disparity  using  the  DP  (as  outlined  below)       Here,  you  will  implement  a  stereo  algorithm  that  uses  dynamic  programming.  This   algorithm  enforces  the  ordering  constraint,  the  uniqueness  constraint,  and  matches   individual  pixels  based  on  a  cost  function.  Every  pixel  in  one  image  can  either  match   one  pixel  in  another  image,  or  be  marked  as  occluded.       Note:  this  algorithm  assumes  the  image  intensities  in  the  left  and  right  image  fall  in   the  range  0  to  1.       Part  A  (20  points):  Disparity  matching  along  each  epipolar  lines   Just  like  in  Assignment  3,  you  will  use  the  files  provided  with  the  script   DepthEstimationFromStereoVideoExample. Your  DP  algorithm  will   replace  the  disparity.m  built-­‐in  Matlab  function.  For  each  image  pair,  you  seek  to   output  a  disparity  map  for  the  left  image  indicating  the  disparity  to  the  right  image.     The  cost  function  is  defined  such  that  the  penalty  for  matching  two  pixels  is  the   square  of  the  difference  in  their  intensity.  The  penalty  for  a  pixel  being  occluded  is  a   fixed  value,  occ.       The  images  (frames  in  the  video)  are  already  rectified,  so  that  the  epipolar  lines  are   horizontal  scan  lines  of  the  input  images.  Thus,  you  just  need  to  run  the  DP  stereo   algorithm  on  each  corresponding  line/row  in  the  two  images.  You  will  need  to  call   your  function  once  for  each  epipolar  line.  Your  function  should  have  the  form:       D = stereoDP(e1, e2, maxDisp, occ)   The  recommended  value  for  occ is 0.01.    For  maxDisp,  you  can  start  with  the   value  64  (this  is  the  maximum  disparity  value  as  resulting  from  using  the  built-­‐in   Matlab  disparity.m  function).  Feel  free  to  try  a  lower  value  and  notice  if  your   disparity  maps  improves.     Algorithm:   Consider  two  scanlines  Il(i)  and  Ir(j),  1  ≤  i,  j  ≤  N,  where  N  is  the  number  of  pixels  in   each  line  (the  process  will  be  repeated  for  each  row  of  the  image).  Pixels  in  each   scanline  may  be  matched  or  skipped  if  they  are  considered  to  be  occluded,  in  either   the  left  or  right  image).       Let  dij  be  the  cost  associated  with  matching  pixel  Il(i)  with  pixel  Ir(j).  Here  we   consider  a  squared  error  measure  between  pixels  given  by:     dij = (Il(i) − Ir(j))2   The  cost  of  skipping  a  pixel  (in  either  scanline)  is  given  by  a  constant  occ.    
We  can  compute  the  optimal  (minimal  cost)  alignment  of  two  scanlines  recursively   as  follows:       1. D(0,j) = j * occ 2. D(i,0) = i * occ 3. D(1, 1) = d11, 4. D(i, j) = = min(D(i−1,j−1) + dij , D(i−1,j) + occ, D(i,j−1) + occ) Note:  just  like  in  the  LCS  complete  problem,  you  will  need  to  save  which  “direction”   was  used  for  the  calculation  of  each  D(i, j)value:  North,  West,  or  Northwest.     Part  B  (10  points):  Backtracking     The  goal  is  to  find  the  optimal  alignment  (and  thus  the  disparity)  by  backtracking.   Starting  at  (i,  j)  =  (N,  N),  trace  your  path  of  minimum  cost  all  the  way  to  (1,1).  You   will  need  to  use  the  “directions”  saved  in  part  A.    Selecting  (i  −  1,  j)  corresponds  to   skipping  a  pixel  in  Il  (a  unit  increase  in  disparity),  while  selecting  (i,  j  −  1)   corresponds  to  skipping  a  pixel  in  Ir  (a  unit  decrease  in  disparity).  Selecting  (i  −  1,  j  −   1)  matches  pixels  (i,  j),  and  therefore  leaves  disparity  unchanged.     Part  C  (10  points):  Displaying  the  disparity  map   For  display  purposes,  the  disparity  values  should  be  normalized  and  mapped  to  the   range  [0,1]  and,  to  distinguish  valid  disparities  from  occlusions,  you  should  colorize   the  image  so  that  occluded  pixels  are  shown  in  color  while  the  rest  of  the  disparity   map  is  shown  in  grayscale.  Here  is  pseudo-­‐code  for  scaling  the  values  appropriately   and  showing  occlusions  in  a  different  color:       function [d_color] = display_dmap(d) % 1. Map disparity into the range [0,1] % max_d = the maximum calculated value of disparity; % min_d = the minimum calculated value of disparity; % scale the disparity values by subtracting the minimum % value min_d and dividing by the difference beween max_d % and min_d % 2. Colorize occluded pixels to be red % dColor = color image where each RGB layer is equal to the % scaled disparity matrix (values between 0 and 1) % find the positions/indices where each of the 3 values of % dColor is equal to NaN, and store them in a variable % replace the values of these positions with: % dColor(at position in R layer) = 1;
% dColor(at position in G layer) = 0; % dColor(at position in B layer) = 0; % 3. Display dColor image using imshow   Part  C  (extra  credit  20  points):  Different  Cost  Metrics     Up  to  this  point,  we  have  used  the  squared  difference  in  pixel  value  as  our  matching   cost.  In  this  section  we  will  extend  our  definition  of  matching  cost  to  include   neighborhoods  of  pixels.  We  will  evaluate  two  different  cost  metrics:   1. (10  points)  Sum  of  Squared  Differences  (SSD)  and     2. (10  points)  Normalized  Cross  Correlation  (NCC).    W e  wish  to  compute  the  SSD/NCC  match  cost  between  pixel  (x1,  y)  in  image  1  and   pixel  (x2,  y)  in  image  2.  We  first  extract  a  window  W1  centered  at  pixel  (x1,  y)  from   image  1.  We  then  extract  a  window  W2  centered  at  pixel  (x2,  y)  from  image  2.  The   size  of  the  two  windows  should  be  the  same.    Use  the  same  definition  of  window   matching  with  SSD  and  NCC  as  in  Assignment  3.     For  this  assignment  (extra  credit),  evaluate  your  algorithm  using  the  SSD  and  NCC   match  costs  with  window  sizes  of  3x3  and  5x5  (four  disparity  maps  total,  5  points   each).  You  can  start  with  the  same  occlusion  penalty  (occ)  as  for  1-­‐pixel  SSD,  and   then  try  to  change  this  value  and  see  how  it  affects  your  disparity  maps.     Since  evaluating  these  cost  functions  can  be  computationally  intensive,  you  may  find   it  helpful  to  optimize  your  implementation  to  get  acceptable  run-­‐times.  The   following  list  of  suggestions  may  be  of  help:   •    Adjust  the  values  for  the  minimum  and  maximum  disparity  for  each  epipolar  line   and  only  evaluate  the  match  cost  for  pixels  in  this  disparity  range.  You  can  use  the   values  obtained  at  the  first  pass  and  then  reduce  the  search  range  accordingly.   •    Think  of  ways  to  compute  any  part  of  the  match  cost  using  vectorized  code  rather   than  loops.     •    Take  advantage  of  Matlab’s  profiling  tool  (available  under  Desktop  →  Profiler  in   the  menu).  This  will  isolate  the  slowest  parts  of  your  code.     Implementing  the  first  suggestion  is  probably  sufficient  to  make  your  algorithm  run   in  a  reasonable  amount  of  time.       Task  3  (20  points):  Calculate  stereo  disparity  using  the  DP  (cones  images)     Task  4  (20  points):  Calculate  stereo  disparity  using  the  DP  (teddy  images)     The  left  and  right  images  for  the  cones  and  the  teddy  sets,  as  well  as  the  left  and  right   disparity  maps  (ground  truth)  can  be  found  here:   http://vision.middlebury.edu/stereo/data/scenes2003/    

More products