$29.99
Assignment on Fourier Analysis
1. What is a periodic Function? Provide an example with neat sketch. Determine the period of the function
π¦π¦ = 2023π π π π ππ202211π₯π₯ + 12
2. DeοΏ½ine Odd and Even Function with οΏ½igures. Provide example.
3. From the deοΏ½inition of Fourier Series ππ(π₯π₯) = ππ0 + β (ππππππππππ οΏ½
ππππππ
πΏπΏ οΏ½ + πππππ π π π π π β
ππ=1 οΏ½
ππππππ
πΏπΏ οΏ½, which is period
over the interval [βπΏπΏ, +πΏπΏ], derive the formula for the coefοΏ½icients ππ0, ππππ, ππππ.
4. Using Eulerβs Identities, prove that the Fourier series can be expressed as ππ(π₯π₯) = β ππππππ
ππππππππ
+β πΏπΏ ππ=ββ
5. DeοΏ½ine Orthogonal Functions. Using β« π π π π π π ππππ ππππ = 0, ππππππ +ππ
βππ β« ππππππ ππππ ππππ = 0, π€π€βππππππ ππ, ππ β ππ, +ππ
βππ prove
the following identities β
a. β«βππ
ππ cos ππππ cos ππππ ππππ = οΏ½
2ππ if ππ = ππ = 0
ππ if ππ = ππ β 0
0 if ππ β ππ
b. β«0
ππ cos ππππ cos ππππ ππππ = οΏ½
ππ if ππ = ππ = 0 ππ
2
if ππ = ππ β 0
0 if ππ β ππ
c. β«βππ
ππ sin ππππ sin ππππ ππππ = οΏ½
ππ if ππ = ππ
0 if ππ β ππ
d. β«0
ππ sin πππ₯π₯ sin ππππ ππππ = οΏ½
ππ
2
if ππ = ππ
0 if ππ β ππ
e. β«βππ
ππ sin ππππ cos ππππ ππππ = 0
6. Draw sketches and determine the Fourier Series for the following functions.
a. π π (π₯π₯) = π₯π₯
ππ
, for βππ < π₯π₯ < +ππ
b. π π (π₯π₯) = 3|sin π₯π₯| for 0 β€ π₯π₯ < 2ππ
c. π π (π₯π₯) = οΏ½
2sin π₯π₯ for 0 β€ π₯π₯ < ππ
0 for ππ β€ π₯π₯ < 2ππ
d. π π (π₯π₯) = οΏ½
1 for 0 β€ π₯π₯ < ππ
0 for ππ β€ π₯π₯ < ππ
e. π π (π₯π₯) = π΄π΄ β π΄π΄π΄π΄
ππ
for 0 β€ π₯π₯ < ππ