$29.99
Assignment on Fourier Analysis
1. What is a periodic Function? Provide an example with neat sketch. Determine the period of the function
π¦π¦ = 2023π π π π ππ202211π₯π₯ + 12
2. DeοΏ½ine Odd and Even Function with οΏ½igures. Provide example.
3. From the deοΏ½inition of Fourier Series ππ(π₯π₯) = ππ0 + ∑ (ππππππππππ οΏ½
ππππππ
πΏπΏ οΏ½ + πππππ π π π π π ∞
ππ=1 οΏ½
ππππππ
πΏπΏ οΏ½, which is period
over the interval [−πΏπΏ, +πΏπΏ], derive the formula for the coefοΏ½icients ππ0, ππππ, ππππ.
4. Using Euler’s Identities, prove that the Fourier series can be expressed as ππ(π₯π₯) = ∑ ππππππ
ππππππππ
+∞ πΏπΏ ππ=−∞
5. DeοΏ½ine Orthogonal Functions. Using ∫ π π π π π π ππππ ππππ = 0, ππππππ +ππ
−ππ ∫ ππππππ ππππ ππππ = 0, π€π€βππππππ ππ, ππ ∈ ππ, +ππ
−ππ prove
the following identities –
a. ∫−ππ
ππ cos ππππ cos ππππ ππππ = οΏ½
2ππ if ππ = ππ = 0
ππ if ππ = ππ ≠ 0
0 if ππ ≠ ππ
b. ∫0
ππ cos ππππ cos ππππ ππππ = οΏ½
ππ if ππ = ππ = 0 ππ
2
if ππ = ππ ≠ 0
0 if ππ ≠ ππ
c. ∫−ππ
ππ sin ππππ sin ππππ ππππ = οΏ½
ππ if ππ = ππ
0 if ππ ≠ ππ
d. ∫0
ππ sin πππ₯π₯ sin ππππ ππππ = οΏ½
ππ
2
if ππ = ππ
0 if ππ ≠ ππ
e. ∫−ππ
ππ sin ππππ cos ππππ ππππ = 0
6. Draw sketches and determine the Fourier Series for the following functions.
a. π π (π₯π₯) = π₯π₯
ππ
, for −ππ < π₯π₯ < +ππ
b. π π (π₯π₯) = 3|sin π₯π₯| for 0 ≤ π₯π₯ < 2ππ
c. π π (π₯π₯) = οΏ½
2sin π₯π₯ for 0 ≤ π₯π₯ < ππ
0 for ππ ≤ π₯π₯ < 2ππ
d. π π (π₯π₯) = οΏ½
1 for 0 ≤ π₯π₯ < ππ
0 for ππ ≤ π₯π₯ < ππ
e. π π (π₯π₯) = π΄π΄ − π΄π΄π΄π΄
ππ
for 0 ≤ π₯π₯ < ππ