Starting from:

$29.99

Assignment on Fourier Analysis

Assignment on Fourier Analysis
1. What is a periodic Function? Provide an example with neat sketch. Determine the period of the function
𝑦𝑦 = 2023𝑠𝑠𝑠𝑠𝑛𝑛202211π‘₯π‘₯ + 12
2. DeοΏ½ine Odd and Even Function with οΏ½igures. Provide example.
3. From the deοΏ½inition of Fourier Series 𝑓𝑓(π‘₯π‘₯) = π‘Žπ‘Ž0 + ∑ (π‘Žπ‘Žπ‘›π‘›π‘π‘π‘π‘π‘π‘ οΏ½
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿 οΏ½ + 𝑏𝑏𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠 ∞
𝑛𝑛=1 οΏ½
𝑛𝑛𝑛𝑛𝑛𝑛
𝐿𝐿 �, which is period
over the interval [−𝐿𝐿, +𝐿𝐿], derive the formula for the coefοΏ½icients π‘Žπ‘Ž0, π‘Žπ‘Žπ‘›π‘›, 𝑏𝑏𝑛𝑛.
4. Using Euler’s Identities, prove that the Fourier series can be expressed as 𝑓𝑓(π‘₯π‘₯) = ∑ 𝑐𝑐𝑛𝑛𝑒𝑒
𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
+∞ 𝐿𝐿 𝑛𝑛=−∞
5. DeοΏ½ine Orthogonal Functions. Using ∫ 𝑠𝑠𝑠𝑠𝑠𝑠 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑 = 0, π‘Žπ‘Žπ‘Žπ‘Žπ‘Žπ‘Ž +πœ‹πœ‹
−πœ‹πœ‹ ∫ 𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛 𝑑𝑑𝑑𝑑 = 0, π‘€π‘€β„Žπ‘’π‘’π‘’π‘’π‘’π‘’ π‘šπ‘š, 𝑛𝑛 ∈ 𝑍𝑍, +πœ‹πœ‹
−πœ‹πœ‹ prove
the following identities –
a. ∫−πœ‹πœ‹
πœ‹πœ‹ cos 𝑛𝑛𝑛𝑛 cos π‘šπ‘šπ‘šπ‘š 𝑑𝑑𝑑𝑑 = οΏ½
2πœ‹πœ‹ if 𝑛𝑛 = π‘šπ‘š = 0
πœ‹πœ‹ if 𝑛𝑛 = π‘šπ‘š ≠ 0
0 if 𝑛𝑛 ≠ π‘šπ‘š
b. ∫0
πœ‹πœ‹ cos 𝑛𝑛𝑛𝑛 cos π‘šπ‘šπ‘šπ‘š 𝑑𝑑𝑑𝑑 = οΏ½
πœ‹πœ‹ if 𝑛𝑛 = π‘šπ‘š = 0 πœ‹πœ‹
2
if 𝑛𝑛 = π‘šπ‘š ≠ 0
0 if 𝑛𝑛 ≠ π‘šπ‘š
c. ∫−πœ‹πœ‹
πœ‹πœ‹ sin 𝑛𝑛𝑛𝑛 sin π‘šπ‘šπ‘šπ‘š 𝑑𝑑𝑑𝑑 = οΏ½
πœ‹πœ‹ if 𝑛𝑛 = π‘šπ‘š
0 if 𝑛𝑛 ≠ π‘šπ‘š
d. ∫0
πœ‹πœ‹ sin 𝑛𝑛π‘₯π‘₯ sin π‘šπ‘šπ‘šπ‘š 𝑑𝑑𝑑𝑑 = οΏ½
πœ‹πœ‹
2
if 𝑛𝑛 = π‘šπ‘š
0 if 𝑛𝑛 ≠ π‘šπ‘š
e. ∫−πœ‹πœ‹
πœ‹πœ‹ sin 𝑛𝑛𝑛𝑛 cos π‘šπ‘šπ‘šπ‘š 𝑑𝑑𝑑𝑑 = 0
6. Draw sketches and determine the Fourier Series for the following functions.
a. 𝑠𝑠(π‘₯π‘₯) = π‘₯π‘₯
πœ‹πœ‹
, for −πœ‹πœ‹ < π‘₯π‘₯ < +πœ‹πœ‹
b. 𝑠𝑠(π‘₯π‘₯) = 3|sin π‘₯π‘₯| for 0 ≤ π‘₯π‘₯ < 2πœ‹πœ‹
c. 𝑠𝑠(π‘₯π‘₯) = οΏ½
2sin π‘₯π‘₯ for 0 ≤ π‘₯π‘₯ < πœ‹πœ‹
0 for πœ‹πœ‹ ≤ π‘₯π‘₯ < 2πœ‹πœ‹
d. 𝑠𝑠(π‘₯π‘₯) = οΏ½
1 for 0 ≤ π‘₯π‘₯ < πœ‹πœ‹
0 for πœ‹πœ‹ ≤ π‘₯π‘₯ < πœ‹πœ‹
e. 𝑠𝑠(π‘₯π‘₯) = 𝐴𝐴 − 𝐴𝐴𝐴𝐴
𝑃𝑃
for 0 ≤ π‘₯π‘₯ < 𝑃𝑃

More products