$29.99
EECE5644 - Homework 2
Please submit your solutions to Blackboard in a single PDF file that includes all math and
numerical results in the main body. Make sure that you cite all resources you benefit from (books,
papers, software packages). Also include your code in one of the following ways: (Acceptable)
upload a ZIP file containing all code files, (Preferred) keep your code in an online version control
repository (such as GitHub) and provide a link to the relevant online repository. This is a graded
assignment and the entirety of your submission must contain only your own work. You may benefit
from literature including software (as allowed by specific restrictions in questions), as long as these
sources are properly acknowledged in your submission.
Question 1 (30%)
Problem 2.13 from the textbook (included in the next page).
Question 2 (35%)
Write a function that generates a specified number of independent and identically distributed
samples paired with the class labels that generated these samples. Specifically, the data distribution
is a mixture of Gaussians with specified prior probabilities for each Gaussian class conditional pdf,
as well as respective mean vectors and covariance matrices. Generate and visualize data in the form
of scatter plots, with a color/marker based identification of the class label for each sample for each
of the following cases (using Matlab syntax for 2×2 matrices):
1. Number of samples = 400; class means [0,0]
T
and [3,3]
T
; class covariance matrices both set
to I; equal class priors.
2. All parameters same as (1), but both covariance matrices changed to [3,1; 1,0.8].
3. Number of samples = 400; class means[0,0]
T
and [2,2]
T
; class covariance matrices[2,0.5; 0.5,1]
and [2,−1.9;−1.9,5]; equal class priors.
4. Same (1), but prior for class priors are 0.05 and 0.95.
5. Same (2), but prior for class priors are 0.05 and 0.95.
6. Same (3), but prior for class priors are 0.05 and 0.95.
Make sure your plots include axis labels, titles, and data legends. Describe how your sampling
procedure works, using zero-mean identity-covariance Gaussian sample generators.
Additionally, for each of these datasets, use the maximum-a-priori (MAP) classification rule
(using full knowledge of the respective data pdfs) and produce inferred class labels for each data
samples. In accompanying visualizations, demonstrate scatter plots of the data for each case along
with their inferred (decision) labels. For each case, count the number of errors and estimate the
probability of error based on these counts.
Question 3 (35%)
For the datasets you generated in Question 2, implement and apply the Fisher Linear Discriminant Analysis classifier with the decision threshold for the linear discriminant score set to minimize
the smallest probability error you can achieve on the specific data sets generated for each case. Visualize the one-dimensional Fisher LDA discriminant scores and decision labels for each sample
in separate plots for each case. Note: We will soon discuss the principle of cross-validation that
dictates parameter selection and performance assessment must use independent datasets.
1
2