Starting from:
$30

$27

Lab: Feature Selection for Linear Models for Baseball Salaries

Lab: Feature Selection for Linear Models for Baseball
Salaries
Ever wondered why sports players make the money they do?
In this lab, we will use linear models with feature selection to figure this out. The problem is to predict a baseball
player's salary based on various statistics such as the number of hits, home runs, etc. In doing the lab, you will
learn how to:
Convert categorical features to numerical values using tools in the pandas package.
Perform LASSO and compare the results with simple linear mddel fit without regularization.
Visualize the features obtained by LASSO and the LASSO path.
This lab is a Python adaptation of p. 251-255 of "Introduction to Statistical Learning with Applications in R" by
Gareth James, Daniela Witten, Trevor Hastie and Robert Tibshirani.
Submission:
Fill in all the parts labeled TODO
Print out your jupyter notebook, convert to pdf and upload on CCLE.
Loading and Pre-processing the Data
First we load some standard packages.
In [1]: %matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
In [2]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all" # so that all lines will be pr
inted
First, download the file Hitters.csv from the assignment page on the CCLE website. Use the pd.read_csv
command to load the file into a dataframe df. Then, use the pd.head() command to view the first few lines of
the file. It is always good to visualize the dataframe to ensure that the file is loaded correctly.
In [3]: # TODO
df = pd.read_csv("Hitters.csv")
df.head()
Now do the following
Use the df = df.dropna() command to remove any rows of the dataframe where there is incomplete
data
Use the the df = df.drop(col_list,s=1) method to remove the column with the player's name. For
the parameter col_list, put the list of string names of the columns to be dropped.
Use df.info() to show all the columns.
Out[3]:
Unnamed:
0
AtBat Hits HmRun Runs RBI Walks Years CAtBat CHits ... CRuns C
0 -Andy
Allanson 293 66 1 30 29 14 1 293 66 ... 30 29
1 -Alan
Ashby 315 81 7 24 38 39 14 3449 835 ... 321 41
2 -Alvin
Davis 479 130 18 66 72 76 3 1624 457 ... 224 26
3 -Andre
Dawson 496 141 20 65 78 37 11 5628 1575 ... 828 83
4 -Andres
Galarraga 321 87 10 39 42 30 2 396 101 ... 48 46
5 rows × 21 columns
In [4]: # TODO
df = df.dropna()
df = df.drop(["Unnamed: 0"], axis=1)
df.info()
You should see that three of the columns have object types. These are categorical variables. For example,
Division is E or W for East or West. We need to convert these to numeric values using one-hot coding. Pandas
has a routine for this called get_dummies. Run get_dummies on the dataframe and run the info command to
print the new columns.
<class 'pandas.core.frame.DataFrame'
Int64Index: 263 entries, 1 to 321
Data columns (total 20 columns):
AtBat 263 non-null int64
Hits 263 non-null int64
HmRun 263 non-null int64
Runs 263 non-null int64
RBI 263 non-null int64
Walks 263 non-null int64
Years 263 non-null int64
CAtBat 263 non-null int64
CHits 263 non-null int64
CHmRun 263 non-null int64
CRuns 263 non-null int64
CRBI 263 non-null int64
CWalks 263 non-null int64
League 263 non-null object
Division 263 non-null object
PutOuts 263 non-null int64
Assists 263 non-null int64
Errors 263 non-null int64
Salary 263 non-null float64
NewLeague 263 non-null object
dtypes: float64(1), int64(16), object(3)
memory usage: 43.1+ KB
In [5]: # TODO
df = pd.get_dummies(df)
df.info()
You can see that the field such as Division has been converted to two fields Division_E and Division_W. For
one-hot coding we can remove one of each of the new fields. Use the df.drop(...) method to do this.
In [6]: # TODO
df = df.drop(["League_A", "Division_E", "NewLeague_A"], axis=1) # Put the lis
t of columns to drop in the arguments
Extract the salary column from the df dataframe and convert it to a numpy array y. This will be the target vector.
<class 'pandas.core.frame.DataFrame'
Int64Index: 263 entries, 1 to 321
Data columns (total 23 columns):
AtBat 263 non-null int64
Hits 263 non-null int64
HmRun 263 non-null int64
Runs 263 non-null int64
RBI 263 non-null int64
Walks 263 non-null int64
Years 263 non-null int64
CAtBat 263 non-null int64
CHits 263 non-null int64
CHmRun 263 non-null int64
CRuns 263 non-null int64
CRBI 263 non-null int64
CWalks 263 non-null int64
PutOuts 263 non-null int64
Assists 263 non-null int64
Errors 263 non-null int64
Salary 263 non-null float64
League_A 263 non-null uint8
League_N 263 non-null uint8
Division_E 263 non-null uint8
Division_W 263 non-null uint8
NewLeague_A 263 non-null uint8
NewLeague_N 263 non-null uint8
dtypes: float64(1), int64(16), uint8(6)
memory usage: 38.5 KB
In [7]: # TODO
y = df["Salary"].values
y # look at Salary array
For the features, first create a dataframe dfX with the salary column removed. You can use the df.drop(...)
method. Then, get a list of the feature names features from dfX.columns.tolist(). We will use this list for
printing later. Then, convert the dataframe dfX to a numpy array X for the data matrix of all the othe features.
Out[7]: array([ 475. , 480. , 500. , 91.5 , 750. , 70. ,
100. , 75. , 1100. , 517.143, 512.5 , 550. ,
700. , 240. , 775. , 175. , 135. , 100. ,
115. , 600. , 776.667, 765. , 708.333, 750. ,
625. , 900. , 110. , 612.5 , 300. , 850. ,
90. , 67.5 , 180. , 305. , 215. , 247.5 ,
815. , 875. , 70. , 1200. , 675. , 415. ,
340. , 416.667, 1350. , 90. , 275. , 230. ,
225. , 950. , 75. , 105. , 320. , 850. ,
535. , 933.333, 850. , 210. , 325. , 275. ,
450. , 1975. , 1900. , 600. , 1041.667, 110. ,
260. , 475. , 431.5 , 1220. , 70. , 145. ,
595. , 1861.46 , 300. , 490. , 2460. , 375. ,
750. , 1175. , 70. , 1500. , 385. , 1925.571,
215. , 900. , 155. , 700. , 535. , 362.5 ,
733.333, 200. , 400. , 400. , 737.5 , 500. ,
600. , 662.5 , 950. , 750. , 297.5 , 325. ,
87.5 , 175. , 90. , 1237.5 , 430. , 100. ,
165. , 250. , 1300. , 773.333, 1008.333, 275. ,
775. , 850. , 365. , 95. , 110. , 100. ,
277.5 , 80. , 600. , 200. , 657. , 75. ,
2412.5 , 250. , 155. , 640. , 300. , 110. ,
825. , 195. , 450. , 630. , 86.5 , 1300. ,
1000. , 1800. , 1310. , 737.5 , 625. , 125. ,
1043.333, 725. , 300. , 365. , 75. , 1183.333,
202.5 , 225. , 525. , 265. , 787.5 , 800. ,
587.5 , 145. , 420. , 75. , 575. , 780. ,
90. , 150. , 700. , 550. , 650. , 68. ,
100. , 670. , 175. , 137. , 2127.333, 875. ,
120. , 140. , 210. , 800. , 240. , 350. ,
175. , 200. , 1940. , 700. , 750. , 450. ,
172. , 1260. , 750. , 190. , 580. , 130. ,
450. , 300. , 250. , 1050. , 215. , 400. ,
560. , 1670. , 487.5 , 425. , 500. , 250. ,
400. , 450. , 750. , 70. , 875. , 190. ,
191. , 740. , 250. , 140. , 97.5 , 740. ,
140. , 341.667, 1000. , 100. , 90. , 200. ,
135. , 155. , 475. , 1450. , 150. , 105. ,
350. , 90. , 530. , 341.667, 940. , 350. ,
326.667, 250. , 740. , 425. , 925. , 185. ,
920. , 286.667, 245. , 235. , 1150. , 160. ,
425. , 900. , 500. , 277.5 , 750. , 160. ,
1300. , 525. , 550. , 1600. , 120. , 165. ,
700. , 875. , 385. , 960. , 1000. ])
In [8]: # TODO
dfX = df.drop(["Salary"], axis = 1)
features = dfX.columns.tolist()
X = dfX.values
Print the number of samples, number of features, average salary and std deviation of the salary. Note the salary
is 1000s of US dollars.
In [9]: # TODO
y.shape # 263 samples in salary
In [10]: X.shape # 263 observations and 19 features to predict salary
In [11]: y.mean() # Salary mean is $535,926!
In [12]: y.std() # standard deviation of salary is $450,260
Finally, before continuing, we want to scale the features X and target y so that they have mean 0 and unit
variance. To do this, use the preprocessing.scale method. Let Xs and ys be the scaled feature matrix.
In [13]: from sklearn import preprocessing
# TODO
X = X.astype(float) # Needed to avoid a warning with the scale method
Xs = preprocessing.scale(dfX)
ys = preprocessing.scale(y)
# confirming that mean is 0 and unit variance
Xs.mean()
In [14]: ys.mean()
In [15]: Xs.std()
Out[9]: (263,)
Out[10]: (263, 19)
Out[11]: 535.92588212927751
Out[12]: 450.26022382434286
Out[13]: 2.6305864741968887e-17
Out[14]: 1.5196969158367161e-16
Out[15]: 1.0
In [16]: ys.std()
Linear Models with No Regularization
First, we will try to fit the data with a linear model with no regularization. First, split the data into training and test
using half the samples for each. You can use the train_test_split method.
In [17]: from sklearn.model_selection import train_test_split
#TODO
X_tr, X_ts, y_tr, y_ts = train_test_split(Xs, ys, test_size = 0.5, random_stat
e = 2018)
Now use the linear_model.LinearRegression() to fit a linear model on the training data. Measure the
normalized MSE on the training and test data. By normalized MSE we mean:
mse = np.mean((y-yhat)**2)/np.mean(y**2)
where y is the mean-removed true value and yhat is the predicted value. This is the percentage of variance not
explained by the model.
In [18]: from sklearn import linear_model
# TODO: Fit linear model
lm = linear_model.LinearRegression()
lm.fit(X_tr, y_tr)
pred_train = lm.predict(X_tr)
pred_test = lm.predict(X_ts)
In [19]: # TODO: Measure normalized mse for the training set and print
mse_train = np.mean((y_tr - pred_train)**2)/np.mean(y_tr**2)
mse_train # normalized training MSE is 0.3655
In [20]: # TODO: Measure normalized mse for the test set and print
mse_test = np.mean((y_ts - pred_test)**2)/np.mean(y_ts**2)
mse_test # normalized training MSE on test set is 0.6311
Out[16]: 1.0
Out[18]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=1, normalize=False)
Out[19]: 0.3655443684965497
Out[20]: 0.63110728872131772
LASSO
If you did the above correctly, you should see that the test MSE is a lot higher than the training MSE. This
suggests over-fitting. To avoid this, we will use LASSO in combination with k-fold cross validation. The sklearn
package has many methods for this purpose. In particular, there is a method LassoCV() that performs crossvalidation and LASSO fitting. But, here we will do the cross-validation and regularization selection manually so
that you can see how it is done.
Toward this end, we first construct a K-fold object with the model_selection.KFold(...) command. Set the
parameter n_splits=nfold with nfold = 10. Also, set shuffle=True to make sure the data is shuffled.
In [21]: from sklearn import model_selection
nfold = 10
# TODO
kf = model_selection.KFold(n_splits = nfold, shuffle = True)
Set the alpha values to test in some range. In this case, it is useful to logarithically space alpha from 1e-4 to
1e3.
In [22]: # TODO: Create alpha values to test
nalpha = 100
alpha_test = np.logspace(0.0001, 1000, num = nalpha) # Use np.logspace(...)
alpha_test
Now, we do the main cross-validation loop. You can do this by completing the following code.
C:\Users\KK\Anaconda3\lib\site-packages\numpy\core\function_base.py:226: Runt
imeWarning: overflow encountered in power
return _nx.power(base, y)
Out[22]: array([ 1.00023029e+000, 1.26214453e+010, 1.59264206e+020,
2.00968168e+030, 2.53592476e+040, 3.19996667e+050,
4.03789057e+060, 5.09522816e+070, 6.42943377e+080,
8.11300639e+090, 1.02374291e+101, 1.29181404e+111,
1.63008065e+121, 2.05692370e+131, 2.59553729e+141,
3.27518898e+151, 4.13281014e+161, 5.21500279e+171,
6.58057187e+181, 8.30372059e+191, 1.04780826e+202,
1.32218099e+212, 1.66839930e+222, 2.10527625e+232,
2.65655115e+242, 3.35217955e+252, 4.22996100e+262,
5.33759299e+272, 6.73526279e+282, 8.49891795e+292,
1.07243932e+303, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf])
In [23]: # Construct the LASSO estimator
model = linear_model.Lasso(alpha=1e-3)
# Create an array to store the MSE values
mse_ts = np.zeros((nalpha,nfold))
# main cross-validation loop
for isplit, (train_ind, test_ind) in enumerate(kf.split(Xs)):
print("fold = %d " % isplit)
# TODO: Get the training data in the split
Xtr = Xs[train_ind]
Xts = Xs[test_ind]
ytr = ys[train_ind]
yts = ys[test_ind]
# Loop over the alpha values
for it, a in enumerate(alpha_test):
# TODO: Set the model `alpha` value
model.alpha = a
# TODO: Fit the data on the training data
lasso = linear_model.Lasso()
lasso.set_params(alpha = a)
lasso.fit(Xtr, ytr)
mse_ts[it] = lasso.score(Xts, yts)

pred_train2 = lasso.predict(Xtr)
pred_test2 = lasso.predict(Xts)
# TODO: Measure the normalized mse on test data
mse_ts[it, isplit] = np.mean((ytr - pred_train2)**2)/np.mean(ytr**2)
print("MSE is ", mse_ts[it, isplit]) # print MSEs for each k-fold CV
fold = 0
Out[23]: Lasso(alpha=1.0002302850208247, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0002302850208247, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=12621445342.505049, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=12621445342.505049, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.5926420637276131e+20, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.5926420637276131e+20, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.0096816761646056e+30, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.0096816761646056e+30, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.5359247576689424e+40, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.5359247576689424e+40, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=3.1999666677716413e+50, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=3.1999666677716413e+50, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=4.037890573796939e+60, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=4.037890573796939e+60, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=5.0952281628958868e+70, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=5.0952281628958868e+70, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=6.4294337742676369e+80, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=6.4294337742676369e+80, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=8.1130063926713435e+90, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=8.1130063926713435e+90, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0237429148264865e+101, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0237429148264865e+101, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.2918140390030888e+111, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.2918140390030888e+111, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.6300806454404235e+121, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.6300806454404235e+121, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.0569236983135164e+131, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.0569236983135164e+131, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.595537289837878e+141, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.595537289837878e+141, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=3.2751889768504822e+151, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=3.2751889768504822e+151, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=4.132810141499808e+161, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=4.132810141499808e+161, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=5.2150027941619441e+171, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=5.2150027941619441e+171, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=6.5805718656234448e+181, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=6.5805718656234448e+181, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=8.3037205899702318e+191, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=8.3037205899702318e+191, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0478082611101924e+202, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0478082611101924e+202, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.3221809912257332e+212, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.3221809912257332e+212, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.6683993039969964e+222, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.6683993039969964e+222, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.1052762489023193e+232, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.1052762489023193e+232, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.6565511467033071e+242, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=2.6565511467033071e+242, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=3.3521795530302867e+252, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=3.3521795530302867e+252, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=4.2299610040255453e+262, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=4.2299610040255453e+262, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=5.3375929936098918e+272, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=5.3375929936098918e+272, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=6.7352627928059619e+282, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=6.7352627928059619e+282, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=8.4989179471843154e+292, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=8.4989179471843154e+292, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0724393166978334e+303, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=1.0724393166978334e+303, copy_X=True, fit_intercept=True,
max_iter=1000, normalize=False, positive=False, precompute=False,
random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
Out[23]: Lasso(alpha=inf, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)
C:\Users\KK\Anaconda3\lib\site-packages\sklearn\linear_model\coordinate_desce
nt.py:449: RuntimeWarning: invalid value encountered in double_scalars
l2_reg = alpha * (1.0 - l1_ratio) * n_samples
Out[23]: Lasso(alpha=inf, copy_X=True, fit_intercept=True, max_iter=1000,
normalize=False, positive=False, precompute=False, random_state=None,
selection='cyclic', tol=0.0001, warm_start=False)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-23-85616b48b191 in <module()
25 lasso.set_params(alpha = a)
26 lasso.fit(Xtr, ytr)
--- 27 mse_ts[it] = lasso.score(Xts, yts)
28
29 pred_train2 = lasso.predict(Xtr)
C:\Users\KK\Anaconda3\lib\site-packages\sklearn\base.py in score(self, X, y,
sample_weight)
385 from .metrics import r2_score
386 return r2_score(y, self.predict(X), sample_weight=sample_weig
ht,
-- 387 multioutput='variance_weighted')
388
389
C:\Users\KK\Anaconda3\lib\site-packages\sklearn\metrics\regression.py in r2_s
core(y_true, y_pred, sample_weight, multioutput)
453 """
454 y_type, y_true, y_pred, multioutput = _check_reg_targets(
-- 455 y_true, y_pred, multioutput)
456
457 if sample_weight is not None:
C:\Users\KK\Anaconda3\lib\site-packages\sklearn\metrics\regression.py in _che
ck_reg_targets(y_true, y_pred, multioutput)
74 check_consistent_length(y_true, y_pred)
75 y_true = check_array(y_true, ensure_2d=False)
--- 76 y_pred = check_array(y_pred, ensure_2d=False)
77
78 if y_true.ndim == 1:
C:\Users\KK\Anaconda3\lib\site-packages\sklearn\utils\validation.py in check_
array(array, accept_sparse, dtype, order, copy, force_all_finite, ensure_2d,
allow_nd, ensure_min_samples, ensure_min_features, warn_on_dtype, estimator)
405 % (array.ndim, estimator_name))
406 if force_all_finite:
-- 407 _assert_all_finite(array)
408
409 shape_repr = _shape_repr(array.shape)
C:\Users\KK\Anaconda3\lib\site-packages\sklearn\utils\validation.py in _asser
t_all_finite(X)
56 and not np.isfinite(X).all()):
57 raise ValueError("Input contains NaN, infinity"
--- 58 " or a value too large for %r." % X.dtype)
59
60
ValueError: Input contains NaN, infinity or a value too large for dtype('floa
t64').
In [24]: mse_ts[1, ]
Using the values in the array mse_ts compute the mean and standard error for the MSE values across the folds.
In [25]: # TODO
mse_mean = mse_ts.mean()
mse_mean
In [26]: import math
mse_se = mse_ts.std()/math.sqrt(10) # formula for SE is s/root of n
mse_se
Using the errorbar plot, plot the mean mse with the errorbars equal to the standard error as a function of
alpha. Label the axes. And plot alpha in log-scale.
In [27]: # TODO
plt.errorbar(x = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9), y = mse_ts[1, ], yerr = mse_s
e)
plt.title("Visualizing Normalized MSE over Various Folds")
plt.xlabel("Fold")
plt.ylabel("Normalized MSE")
Out[24]: array([ 0.99964151, -0.0386236 , -0.0386236 , -0.0386236 , -0.0386236 ,
-0.0386236 , -0.0386236 , -0.0386236 , -0.0386236 , -0.0386236 ])
Out[25]: 0.020212902121905397
Out[26]: 0.055664552048580493
Out[27]: <Container object of 3 artists
Out[27]: <matplotlib.text.Text at 0x2b7dd72e438
Out[27]: <matplotlib.text.Text at 0x2b7dd6eaa58
Out[27]: <matplotlib.text.Text at 0x2b7dd704ef0
Print the optimal alpha under the normal rule. That is, the alpha that minimizes the mean test MSE. Also, print
the corresponding minimum MSE.
In [28]: # TODO
alpha_test
Now print the optimal alpha and MSE under the one SE rule.
In [ ]: # TODO
Out[28]: array([ 1.00023029e+000, 1.26214453e+010, 1.59264206e+020,
2.00968168e+030, 2.53592476e+040, 3.19996667e+050,
4.03789057e+060, 5.09522816e+070, 6.42943377e+080,
8.11300639e+090, 1.02374291e+101, 1.29181404e+111,
1.63008065e+121, 2.05692370e+131, 2.59553729e+141,
3.27518898e+151, 4.13281014e+161, 5.21500279e+171,
6.58057187e+181, 8.30372059e+191, 1.04780826e+202,
1.32218099e+212, 1.66839930e+222, 2.10527625e+232,
2.65655115e+242, 3.35217955e+252, 4.22996100e+262,
5.33759299e+272, 6.73526279e+282, 8.49891795e+292,
1.07243932e+303, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf, inf, inf,
inf])
Finally, re-fit the model on the entire dataset using the alpha from the one SE rule. Print the coefficients along
with the feature names. Your print out should be something like:
AtBat 0.000000
Hits 0.151910
HmRun 0.000000
Runs 0.000000
RBI 0.000000
...
This way you can see which features are important.
In [ ]: # TODO
Lasso path
Finally, we will plot the LASSO path to visualize how the coefficients vary with alpha. Read about the
lasso_path method in sklearn and compute and plot the LASSO path.
In [29]: # TODO
alphas1, coeffs, _ = linear_model.lasso_path(Xs, ys, method = "lasso", verbose
= True)
xx = np.sum(np.abs(coeffs.T), axis=1)
xx /= xx[-1]
plt.plot(xx, coeffs.T)
ymin, ymax = plt.ylim()
plt.xlabel('|coef| / max|coef|')
plt.ylabel('Coefficients')
plt.title('LASSO Path')
plt.axis('tight')
plt.show()
What are the first eight coefficients that become non-zero in the LASSO path?
One way to do this is as follows: Recall that coeffs[i,j] is the coeffiecient for feature i for alpha value j.
Compute nnz[i] = the number of alpha values j for which the coefficients coeffs[i,j] are non-zero. Then,
sort the features by nnz[i] in descending order will give the feature indices in order that they appear in the
LASSO path. Print the features names in order.
Out[29]: [<matplotlib.lines.Line2D at 0x2b7df2735c0,
<matplotlib.lines.Line2D at 0x2b7df2737b8,
<matplotlib.lines.Line2D at 0x2b7df273978,
<matplotlib.lines.Line2D at 0x2b7df273b70,
<matplotlib.lines.Line2D at 0x2b7df273d68,
<matplotlib.lines.Line2D at 0x2b7df273f60,
<matplotlib.lines.Line2D at 0x2b7df27a198,
<matplotlib.lines.Line2D at 0x2b7df27a390,
<matplotlib.lines.Line2D at 0x2b7df27a588,
<matplotlib.lines.Line2D at 0x2b7df27a780,
<matplotlib.lines.Line2D at 0x2b7dda174a8,
<matplotlib.lines.Line2D at 0x2b7df27ab38,
<matplotlib.lines.Line2D at 0x2b7df27ad30,
<matplotlib.lines.Line2D at 0x2b7df27af28,
<matplotlib.lines.Line2D at 0x2b7df27e160,
<matplotlib.lines.Line2D at 0x2b7df27e358,
<matplotlib.lines.Line2D at 0x2b7df27e550,
<matplotlib.lines.Line2D at 0x2b7df27e748,
<matplotlib.lines.Line2D at 0x2b7df27e940]
Out[29]: <matplotlib.text.Text at 0x2b7dd77db00
Out[29]: <matplotlib.text.Text at 0x2b7dda0abe0
Out[29]: <matplotlib.text.Text at 0x2b7df242be0
Out[29]: (-0.050000000000000003, 1.05, -0.78222244106266481, 1.0968244995106031)
..............................................................................
In [31]: # TODO
nnz = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
for i in range(len(features)):
for j in range(len(alpha_test)):
if coeffs[i, j] != 0:
nnz[i] = nnz[i] + 1
print(nnz)
features[8]
In [32]: features[4]
In [33]: features[3]
In [34]: features[18]
In [35]: features[7]
In [36]: features[2]
In [37]: features[9]
In [38]: features[14]
[51, 95, 32, 28, 16, 93, 50, 30, 9, 42, 97, 99, 49, 86, 46, 58, 61, 82, 28]
Out[31]: 'CHits'
Out[32]: 'RBI'
Out[33]: 'Runs'
Out[34]: 'NewLeague_N'
Out[35]: 'CAtBat'
Out[36]: 'HmRun'
Out[37]: 'CHmRun'
Out[38]: 'Assists'

More products